Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
FASEB J ; 37(6): e22973, 2023 06.
Article in English | MEDLINE | ID: covidwho-2313274

ABSTRACT

SARS-CoV-2 is the etiological agent of the COVID-19 pandemic. Antibody-based therapeutics targeting the spike protein, specifically the S1 subunit or the receptor binding domain (RBD) of SARS-CoV-2, have gained attention due to their clinical efficacy in treating patients diagnosed with COVID-19. An alternative to conventional antibody therapeutics is the use of shark new antigen variable receptor domain (VNAR ) antibodies. VNAR s are small (<15 kDa) and can reach deep into the pockets or grooves of the target antigen. Here, we have isolated 53 VNAR s that bind to the S2 subunit by phage panning from a naïve nurse shark VNAR phage display library constructed in our laboratory. Among those binders, S2A9 showed the best neutralization activity against the original pseudotyped SARS-CoV-2 virus. Several binders, including S2A9, showed cross-reactivity against S2 subunits from other ß coronaviruses. Furthermore, S2A9 showed neutralization activity against all variants of concern (VOCs) from alpha to omicron (including BA1, BA2, BA4, and BA5) in both pseudovirus and live virus neutralization assays. Our findings suggest that S2A9 could be a promising lead molecule for the development of broadly neutralizing antibodies against SARS-CoV-2 and emerging variants. The nurse shark VNAR phage library offers a novel platform that can be used to rapidly isolate single-domain antibodies against emerging viral pathogens.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Pandemics , Antibodies , Antibodies, Viral , Antibodies, Neutralizing
2.
Curr Protoc ; 2(6): e459, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1898638

ABSTRACT

Single-domain antibodies, including the antigen-binding variable domains of the shark immunoglobulin new antigen receptor and the camelid variable region of the heavy chain, are the smallest antigen recognition domains (∼15 kDa) and have unique characteristics compared to conventional antibodies. They are capable of binding epitopes that are hard to access for classical antibodies and can also be used for therapeutics or diagnostics or as modular building blocks for multi-domain constructs, antibody-drug conjugates, immunotoxins, or chimeric antigen receptor therapy. This article contains detailed procedures for the purification and validation of two single-domain antibodies (one shark and one camel), which bind to the S2 subunit of the SARS-CoV-2 spike protein, using both bacterial and mammalian cell expression systems. It provides a comprehensive reference for the production of single-domain antibodies with high yield, good quality, and purity. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol: Production of single-domain antibodies from Escherichia coli Alternate Protocol: Production of single-domain antibodies using the mammalian cell line Expi293F Support Protocol 1: Production and purification of single-domain antibodies on a small scale with the polymyxin B method Support Protocol 2: Validation of single-domain antibodies by ELISA.


Subject(s)
COVID-19 , Sharks , Single-Domain Antibodies , Animals , Antibodies , Camelus , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Proc Natl Acad Sci U S A ; 119(18): e2201433119, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1815698

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Camelus , Humans , Mice , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics
4.
Antib Ther ; 4(3): 171-174, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1405002
5.
Antib Ther ; 3(4): 246-256, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1207246

ABSTRACT

SARS-CoV-2 antibody therapeutics are being evaluated in clinical and preclinical stages. As of 11 October 2020, 13 human monoclonal antibodies targeting the SARS-CoV-2 spike protein have entered clinical trials with three (REGN-COV2, LY3819253/LY-CoV555, and VIR-7831/VIR-7832) in phase 3. On 9 November 2020, the US Food and Drug Administration issued an emergency use authorization for bamlanivimab (LY3819253/LY-CoV555) for the treatment of mild-to-moderate COVID-19. This review outlines the development of neutralizing antibodies against SARS-CoV-2, with a focus on discussing various antibody discovery strategies (animal immunization, phage display and B cell cloning), describing binding epitopes and comparing neutralizing activities. Broad-neutralizing antibodies targeting the spike proteins of SARS-CoV-2 and SARS-CoV might be helpful for treating COVID-19 and future infections. VIR-7831/7832 based on S309 is the only antibody in late clinical development, which can neutralize both SARS-CoV-2 and SARS-CoV although it does not directly block virus receptor binding. Thus far, the only cross-neutralizing antibody that is also a receptor binding blocker is nanobody VHH-72. The feasibility of developing nanobodies as inhaled drugs for treating COVID-19 and other respiratory diseases is an attractive idea that is worth exploring and testing. A cocktail strategy such as REGN-COV2, or engineered multivalent and multispecific molecules, combining two or more antibodies might improve the efficacy and protect against resistance due to virus escape mutants. Besides the receptor-binding domain, other viral antigens such as the S2 subunit of the spike protein and the viral attachment sites such as heparan sulfate proteoglycans that are on the host cells are worth investigating.

6.
Antib Ther ; 3(3): 205-212, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1109156

ABSTRACT

Facing the COVID-19 global healthcare crisis, scientists worldwide are collaborating to develop prophylactic and therapeutic interventions against the disease. Antibody therapeutics hold enormous promise for the treatment of COVID-19. In March 2020, the Chinese Antibody Society, in collaboration with The Antibody Society, initiated the "COVID-19 Antibody Therapeutics Tracker" ("Tracker") (https://chineseantibody.org/covid-19-track/) program to track the antibody-based COVID-19 interventions in preclinical and clinical development globally. The data are collected from the public domain and verified by volunteers on an ongoing basis. Here, we present exploratory data analyses and visualization to demonstrate the latest trends of COVID-19 antibody development, based on data for over 150 research and development programs and molecules included in the "Tracker" as of 8 August 2020. We categorized the data mainly by their targets, formats, development status, developers and country of origin. Although details are limited in some cases, all of the anti-SARS-CoV-2 antibody candidates appear to target the viral spike protein (S protein), and most are full-length monoclonal antibodies. Most of the current COVID-19 antibody therapeutic candidates in clinical trials are repurposed drugs aimed at targets other than virus-specific proteins, while most of these virus-specific therapeutic antibodies are in discovery or preclinical studies. As of 8 August 2020, eight antibody candidates targeting the SARS-CoV-2 S protein have entered clinical studies, including LY-CoV555, REGN-COV2, JS016, TY027, CT-P59, BRII-196, BRII-198 and SCTA01. Ongoing clinical trials of SARS-CoV-2 neutralizing antibodies will help define the utility of these antibodies as a new class of therapeutics for treating COVID-19 and future coronavirus infections.

7.
Antib Ther ; 3(2): 109-114, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-1109154

ABSTRACT

SARS-CoV-2 gains entry to human cells through its spike (S) protein binding to angiotensin-converting enzyme 2 (ACE2). Therefore, the receptor binding domain (RBD) of the S protein is the primary target for neutralizing antibodies. Selection of broad-neutralizing antibodies against SARS-CoV-2 and SARS-CoV is attractive and might be useful for treating not only COVID-19 but also future SARS-related CoV infections. Broad-neutralizing antibodies, such as 47D11, S309, and VHH-72, have been reported to target a conserved region in the RBD of the S1 subunit. The S2 subunit required for viral membrane fusion might be another target. Due to their small size and high stability, single-domain antibodies might have the ability to be administered by an inhaler making them potentially attractive therapeutics for respiratory infections. A cocktail strategy combining two (or more) antibodies that recognize different parts of the viral surface that interact with human cells might be the most effective.

SELECTION OF CITATIONS
SEARCH DETAIL